Abstract

The purposes of this study were to examine dose alterations to gross tumor volume (GTV) and lung using heterogeneity corrections and to predict the magnitude of these changes. Three separate conformal plans were generated for 37 patients with lung cancer: plan 1 corrected for heterogeneity, plan 2 did not correct for heterogeneity, and plan 3 used identical beams and monitor units from plan 2 but with heterogeneous calculations. Plans 1 and 2 were normalized to the 95% isodose line. Mean dose (MeanDGTV), maximum dose (MaxDGTV), and minimum dose (MinDGTV) to GTV and V20 were compared between plans 1 and 3. For each patient, the amount of lung in all beam paths of plan 3 was quantified by a density correction factor and correlated with the percent change. The median percent change in MeanDGTV, MaxDGTV, and MinDGTV between plan 3 and plan 1 was -4.7% (-0.1% to -19.1%, P < 0.0001), -5.59% (0.16% to -31.86%, P < 0.0001), and -4.88% (2.90% to -24.88%, P < 0.0001), respectively. The median V20 difference was -1% (1% to -8%). The density correction factor correlated with larger differences in MeanDGTV on univariate analysis. Heterogeneity correction lowers the dose to GTV by 5%. This difference can be correlated with the density correction factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.