Abstract

A new 2D crystal, P2S3, is found based on extensive evolutionary algorithm driven structural search. Furthermore, P2S3 is confirmed to be stable by the computed phonon spectrum and ab initio molecular dynamics simulations. This 2D crystalline phase of P2S3 corresponds to the global minimum in the Born-Oppenheimer surface of the phosphorus sulfide monolayers with 2:3 stoichiometry. It is a wide band gap (4.55 eV) semiconductor with PsbndS σ bonds. The electronic properties of P2S3 structure can be fine-tuned by stacking into multilayer P2S3 structures, forming P2S3 nanoribbons or P2S3 nanotubes, expanding its potential applications in the emerging field of 2D electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.