Abstract

Specific first-principles calculations are performed to predict structural, magnetic and electronic properties of seven double perovskite R2CoMnO6 materials, with R being a rare-earth ion, under hydrostatic pressure. All these compounds are found to undergo a first-order transition from a high spin (HS) to low spin (LS) state at a critical pressure (whose value is dependent on the R ion). Such transition not only results in a significant volume collapse but also yields a dramatic change in electronic structure. More precisely, the HS-to-LS transition is accompanied by a transition from an insulator to a half-metallic state in the R2CoMnO6 compounds having the largest rare-earth ionic radius (i.e., Nd, Sm, Gd and Tb) while it induces a change from an insulator to a semiconductor having a narrow band gap for the smallest rare-earth ions (i.e., R = Dy, Ho and Er). Experiments are called for to confirm these predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.