Abstract

This research presents the modeling and prediction of the harmonic behavior of current in an electric power supply grid with integration of photovoltaic power by inverters. The methodology used was based on the use of recurrent artificial neural networks of the nonlinear autoregressive with external input type. Work data was obtained from experimental sources through the use of a test bench, measurement, acquisition and monitoring equipment. The input-output parameters for the neural network were the current values in the inverter and in the supply grid respectively. The results showed that the neural network can capture the dynamics of the analyzed system. The generated model presented flexibility in data handling, allowing to represent and predict the behavior of the harmonic phenomenon. The obtained algorithm can be transferred to physical or virtual systems for the control or reduction of harmonic distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.