Abstract
Abstract In this paper we study the generalized Gause model, with a logistic growth rate for the prey in absence of the predator, a constant death rate for the predator and for several different classes of functional response, all non-analytical. First we consider the piecewise-linear functional response of Holling type I, which essentially has a linear functional response on a bounded interval and a constant functional response for large enough prey density. Next we consider differentiable modifications of this type of functional response, one being a concave down function, the other one being a sigmoidal function. Our main interest is the number of closed orbits of the systems under consideration and the global stability of the system. We compare the generalized Gause model with a functional response that is non-analytical with the generalized Gause model with a functional response that is analytical (e.g., Holling type II or III) and show that the behaviour in the first case is more complicated. As examples of this more complicated behaviour we mention: the co-existence of a stable equilibrium with a stable limit cycle and the existence of a family of closed orbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.