Abstract

Predation is known to have both direct and indirect effects on nutrient cycling in terrestrial and aquatic ecosystems, and the general stress paradigm (GSP) has been promoted as a theory for describing predator-mediated indirect effects on nutrient cycling. The GSP predicts that prey exposed to predators will produce glucocorticosteroids, which have a host of physiological effects including gluconeogenesis, increased respiration, excretion of N and P, and increases in body C:N. We tested the nutrient predictions of the GSP using anuran larvae, which exhibit morphological defenses in addition to behavioral defenses for which the GSP was conceived. Genetically similar Hyla versicolor tadpoles were placed in mesocosms either in the presence or absence of a fed predator (Dytiscus verticalis), and after two weeks, tadpoles exposed to predators exhibited strong induced defenses with large, tubular bodies, larger tails, and reduced activity. Tadpole body %C and N:P increased with no change in C:N, which is contrary to expectations from the GSP. Statistical models suggested that changes in body morphology (e.g., tail muscle width) rather than behavioral defenses (i.e., reduced activity) were most likely responsible for predator-mediated differences in body stoichiometry. This study suggests that strong morphological defenses may overwhelm or counteract the nutrient predictions of the GSP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.