Abstract

In the present work, it was evaluated the in vitro effect of 12 isolates from the fungal species Arthrobotrys, Duddingtonia, Nematoctonus and Monacrosporium genera in different conidial concentrations on the capture of Ancylostoma spp. dog infective larvae (L 3), on 2% water-agar medium at 25 °C, at the end of a period of 7 days. The concentrations used for each nematophagous fungus were 1000, 5000, 10,000, 15,000 and 20,000 conidia/Petri dish plated with 1000 Ancylostoma spp. L 3. All nematode-trapping fungi isolates tested reduced the averages of the uncaptured Ancylostoma spp. L 3 recovered, with the increase of the fungal inoculum concentration, in comparison to the fungus-free control ( p < 0.05). The adhesive network producing species were better predators than the constricting ring or adhesive knob producing species. Duddingtonia flagrans (Isolate CG768) was the most effective, reducing the averages of the uncaptured Ancylostoma spp. L 3 recovered in 92.8%, 96.3%, 97.5%, 98.3% and 98.9%, respectively in five fungal inoculum concentrations established. Other effective nematophagous fungi were Arthrobotrys robusta (Isolate I31), which reduced the averages of the uncaptured Ancylostoma spp. L 3 recovered in 85.4%, 88.3%, 90.7%, 92.5% and 95.2%, and Arthrobotrys oligospora (Isolate A183), with reductions of 66.6%, 79.8%, 86.8%, 89.5% and 90.8%, respectively for both, in the five fungal inoculum concentrations established. No difference was found between Isolates A183 and I31 in the conidial concentrations of 15,000/Petri dish. Nematoctonus robustus (Isolate D1) and Arthrobotrys bronchophaga (Isolate AB) had the smallest percentages of reduction among the tested isolates and showed the lowest predacious activity. The Isolates CG768, I31 and A183 were considered potential biological control agents of Ancylostoma spp. dog free-living stages, being directly influenced by the fungal inoculum concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.