Abstract

Cocaine hydrolase gene transfer of mutated human butyrylcholinesterase (BChE) is evolving as a promising therapy for cocaine addiction. BChE levels after gene transfer can be 1,500-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. Because mutated BChE is approximately 70% as efficient in hydrolyzing acetylcholine as wild-type enzyme, it is important to examine the impact on cholinergic function. Here, we focused on memory and cognition (Stone T-maze), basic neuromuscular function (treadmill endurance and grip strength), and coordination (Rotarod). BALB/c mice were given adeno-associated virus vector or helper-dependent adenoviral vector encoding mouse or human BChE optimized for cocaine. Age-matched controls received saline or luciferase vector. Despite high doses (up to 10(13) particles per mouse) and high transgene expression (1,000-fold above baseline), no deleterious effects of vector treatment were seen in neurobehavioral functions. The vector-treated mice performed as saline-treated and luciferase controls in maze studies and strength tests, and their Rotarod and treadmill performance decreased less with age. Thus, neither the viral vectors nor the large excess of BChE caused observable toxic effects on the motor and cognitive systems investigated. This outcome justifies further steps toward an eventual clinical trial of vector-based gene transfer for cocaine abuse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.