Abstract

Anterior stromal puncture is an inexpensive technique for treating recurrent corneal erosions but is often ineffective and cannot be used in the optical axis because of scarring. These studies tested a novel microfabricated imprinting instrument to assess its potential efficacy for the treatment of corneal epithelial disease in the optical axis. The device is made using glass rods, bundled and drawn through multiple iterative cycles, and then fused under high heat to generate a solid rod comprised of many parallel, aligned, cladded fibers. The rods are sliced into discs and then etched to yield designable spikes based on the borosilicate composition of the glass. Imprinting the cornea yields a regular pattern of imprints. Histologic studies showed both nonpenetrating stable deformations of Bowman layer, with formation of stable epithelial attachments, and full thickness penetration, with superficial ingrowth of the basal epithelium. Microimprinted corneal tissue shows focal subepithelial scarring without evidence of optically evident anterior stromal scarring, and may be an effective way of treating recurrent corneal erosions in the optical axis, which is not currently possible using standard anterior stromal puncture methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.