Abstract

Cardiac fibrosis (scarring), characterised by an increased deposition of extracellular matrix (ECM) proteins, is a hallmark of most types of cardiovascular disease and plays an essential role in heart failure progression. Inhibition of cardiac fibrosis could improve outcomes in patients with cardiovascular diseases and particularly heart failure. However, pharmacological treatment of the ECM build-up is still lacking. In this context, preclinical models of heart disease are important tools for understanding the complex pathogenesis involved in the development of cardiac fibrosis which in turn could identify new therapeutic targets and the facilitation of antifibrotic drug discovery. Many preclinical models have been used to study cardiac fibrosis and each model provides mechanistic insights into the many factors that contribute to cardiac fibrosis. This review discusses the most frequently used rodent models of cardiac fibrosis and also provides context for the use of particular models of heart failure. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.