Abstract

A precision instrument used for the measurement of rotor angles of a laboratory microalternator is described. The measurement is performed by integrating digital signals derived from a phase-locked loop (PLL) reference (i.e. laboratory infinite busbar or the terminals of another machine in a multimachine system) and an optical encoder mounted on the shaft of the machine. The integration is executed by synchronous up-down binary counters. A 12-b digital-analog converter enables both transient and dynamic movement of the rotor to be displayed on an oscilloscope or other suitable recorder. When used on a four-pole 3-MVA microalternator, the resolution of the encoder is 0.2 electrical degrees. Relatively slow and fractional movements of the rotor angle arising from dynamic power imbalances as well as fast and large rotor excursions arising from severe transient disturbances, which sometimes result in pole slipping, are reliably and precisely recorded. It is possible to obtain constant information on the stability or lack thereof for the machine under every operating condition. With appropriate transducers, the principle may easily be applied to continuously monitor changes in the rotor angle of large alternators in interconnected power systems.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.