Abstract

We address the task of rendering by ray tracing the isosurface of a high-quality continuous model of volumetric discrete and regular data. Based on first principles, we identify the quadratic B-spline as the best model for our purpose. The nonnegativity of this basis function allows us to confine the potential location of the isosurface within a binary shell. We then show how to use the space-embedding property of splines to further shrink this shell to essentially a single voxel width. Not all rays traced through a given shell voxel intersect the isosurface; many may only graze it, especially when the ray-tracing vantage point is close to or within the volume to be rendered. We propose an efficient heuristic to detect those cases. We present experiments to support our claims.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.