Abstract

Although photothermal therapy (PTT) can noninvasively kill tumor cells and exert synergistic immunological effects, the immune responses are usually harmed due to the lack of cytotoxic T cells (CTLs) pre-infiltration and co-existing of intricate immunosuppressive tumor microenvironment (TME), including the programmed cell death ligand 1 (PD-L1)/cluster of differentiation 47 (CD47)/regulatory T cells (Tregs)/M2-macrophages overexpression. Indoleamine 2, 3-dioxygenase inhibitor (NLG919) or bromodomain extra-terminal inhibitor (OTX015) holds great promise to reprogram suppressive TME through different pathways, but their collaborative application remains a formidable challenge because of the poor water solubility and low tumor targeting. To address this challenge, a desirable nanomodulator based on dual immune inhibitors loaded mesoporous polydopamine nanoparticles is designed. This nanomodulator exhibits excellent biocompatibility and water solubility, PTT, and bimodal magnetic resonance/photoacoustic imaging abilities. Owing to enhanced permeability and retention effect and tumor acidic pH-responsiveness, both inhibitors are precisely delivered and locally released at tumor sites. Such a nanomodulator significantly reverses the immune suppression of PD-L1/CD47/Tregs, promotes the activation of CTLs, regulates M2-macrophages polarization, and further boosts combined therapeutic efficacy, inducing a strong immunological memory. Taken together, the nanomodulator provides a practical approach for combinational photothermal-immunotherapy, which may be further broadened to other "immune cold" tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.