Abstract

In the context of static analysis via abstract interpretation, convex polyhedra constitute the most used abstract domain among those capturing numerical relational information. Since the domain of convex polyhedra admits infinite ascending chains, it has to be used in conjunction with appropriate mechanisms for enforcing and accelerating the convergence of fixpoint computations. Widening operators provide a simple and general characterization for such mechanisms. For the domain of convex polyhedra, the original widening operator proposed by Cousot and Halbwachs amply deserves the name of standard widening since most analysis and verification tools that employ convex polyhedra also employ that operator. Nonetheless, there is an unfulfilled demand for more precise widening operators. In this paper, after a formal introduction to the standard widening where we clarify some aspects that are often overlooked, we embark on the challenging task of improving on it. We present a framework for the systematic definition of new widening operators that are never less precise than a given widening. The framework is then instantiated on the domain of convex polyhedra so as to obtain a new widening operator that improves on the standard widening by combining several heuristics. A preliminary experimental evaluation has yielded promising results. We also suggest an improvement to the well-known widening delay technique that allows one to gain precision while preserving its overall simplicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.