Abstract
There is growing evidence that cellular functions are regulated by the viscoelastic nature of surrounding matrices. This study aimed to investigate the impact of interfacial viscoelasticity on adhesion and epithelial-mesenchymal transition (EMT) behaviors of epithelial cells. The interfacial viscoelasticity was manipulated using spin-coated thin films composed of copolymers of ε-caprolactone and d,l-lactide photo-cross-linked with benzophenone, whose mechanical properties were characterized using atomic force microscopy and a rheometer. The critical range for the morphological transition of epithelial Madin-Darby canine kidney (MDCK) cells was of the order of 102 ms relaxation time, which was 1-2 orders of magnitude smaller than the relaxation times reported (10-102 s). An analysis of strain rate-dependent viscoelastic properties revealed that the difference was caused by the different strain rate/frequency used for the mechanical characterization of the interface and bulk. Furthermore, decoupling of the interfacial viscous and elastic terms demonstrated that E/N-cadherin expression levels were regulated differently by interfacial relaxation and elasticity. These results confirm the significance of precise manipulation and characterization of interfacial viscoelasticity in mechanobiology studies on EMT progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.