Abstract

Availability of self-assembly effects occurring at the atomically clean Si(1 1 1) surface during high temperature anneals in an ultrahigh vacuum chamber for fabrication of a precise calibrator at nanoscale measurements is discussed. These effects provide formation of ordered monatomic step arrays assembled by step bunches divided by almost singular surface areas with widely spaced monatomic steps suitable for calibration of atomic force microscopes. The monatomic step height at the Si(1 1 1) surface and its replication by the native oxide layer was attested by the high-resolution transmission electron microscopy followed by Digital Micrograph analysis and found to be equal to interplanar spacing (0.314 nm) in the volume of Si crystal with ±0.001 nm of accuracy. Excellent replication of the monatomic step height by oxide film covering the Si surface makes available precise AFM calibration at the nanoscale at ambient conditions. The averaged step height measured by AFM scanning of 1 × 1 µm2 is found to be 0.314 ± 0.003 nm (∼1% of uncertainty). However, when the scan area becomes bigger than 2 × 2 µm2, the height measurement uncertainty increases sharply 15 times (0.310 ± 0.034 nm). We assume that this is due to differences between piezo element calibrations at small and large scan areas. The height measurement uncertainty for step bunches with well-defined quantity of steps (28) even at a large scan area (18 × 18 µm2) turns out to be 0.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.