Abstract

Sophisticated automation is dependent upon industrial robots with precise position control servomotors. In the present work, a fractional order fuzzy PID controller (FOFPID) was designed to improve the position control response of a rotary servo system. The control errors and their fractional derivatives were applied as input scaling factors to the fuzzy logic controller (FLC). Fuzzy inference system (FIS) was employed to restrict performance indices in control signals. FOFPID performance for a Quanser servomotor was compared against PID, fractional order PID and fuzzy PID (FPID) controllers in terms of both simulations and hardware implementation. The controller performance evaluation metrics included time domain characteristics such as rise, peak, settling times and over / undershoots. The integral absolute and integral time absolute errors were also evaluated for comparisons among the different controllers. Results establish that only the FOFPID controller achieves zero percent over and undershoots. It also attains better set point tracking over other controllers. Thus, FOFPID controller is the key to precision robotics in the smart factories of tomorrow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.