Abstract

Molecular crystals carry a great potential as new soft smart materials, with a plethora of recent examples overcoming the major obstacle of mechanical flexibility, and this research direction holds enormous potential to revolutionize optics, electronics, medicine, and space exploration. However, shaping organic crystals into desired shapes and sizes remains a major practical challenge due to the lack of control over the crystallization process, and the difficulties in mechanical post-processing without introduction of defects that are usually imparted by their soft nature. Here we present an innovative approach that employs photochemical processing for precise and nondestructive cutting of a molecular crystal. Our proposed method uses light to post-process crystals of the desired size and shape, similar to using light to cut other materials. This reaction induces strain, ensuring sharp cleavage without the need for melting or other processes. We further demonstrate the potential of this approach by producing crystals of arbitrary size, which can be used as controllable optical waveguides. Among other potential applications, this method can be used to prepare dynamic crystals, particularly those with aspect ratios crucial for mechanical deformation, such as flexible electronics, soft robotics, and sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.