Abstract

Compound-specific stable isotope analysis by gas chromatography-isotope ratio mass spectrometry (GC-IRMS) is increasingly used to assess origin and fate of organic substances in the environment. Although analysis without isotopic discrimination is essential, it cannot be taken for granted for new target compounds. We developed and validated carbon isotope analysis of atrazine, a herbicide widely used in agriculture. Combustion was tested with reactors containing (i) CuO/NiO/Pt operating at 940 degrees C; (ii) CuO operating at 800 degrees C; (iii) Ni/NiO operating at 1150 degrees C and being reoxidized for 2 min during each gas chromatographic run. Accurate and precise carbon isotope measurements were only obtained with Ni/NiO reactors giving a mean deviation delta delta(13)C from dual inlet measurements of -0.1-0.2% per hundred and a standard deviation (SD) of +/- 0.4% per hundred. CuO at 800 degrees C gave precise, but inaccurate values (delta delta(13)C = -1.3% per hundred, SD +/- 0.4% per hundred), whereas CuO/NiO/Pt reactors at 940 degrees C gave inaccurate and imprecise data. Accurate (delta delta(15)N = 0.2% per hundred) and precise (SD +/- 0.3% per hundred) nitrogen isotope analysis was accomplished with a Ni/NiO-reactor previously used for carbon isotope analysis. The applicability of the method was demonstrated for alkaline hydrolysis of atrazine at 20 degrees C and pH 12 (nucleophilic aromatic substitution) giving epsilon(carbon) = -5.6% per hundred +/- 0.1% per hundred (SD) and epsilon(nitrogen) = -1.2% per hundred +/- 0.1% per hundred (SD).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.