Abstract

Interest in semiarid climate forecasting has prominently grown due to risks associated with above average levels of precipitation amount. Longer-lead forecasts in semiarid watersheds are difficult to make due to short-term extremes and data scarcity. The current research is a new application of classification and regression trees (CART) model, which is rule-based algorithm, for prediction of the precipitation over a highly complex semiarid climate system using climate signals. We also aimed to compare the accuracy of the CART model with two most commonly applied models including time series modeling (ARIMA), and adaptive neuro-fuzzy inference system (ANFIS) for prediction of the precipitation. Various combinations of large-scale climate signals were considered as inputs. The results indicated that the CART model had a better results (with Nash–Sutcliffe efficiency, NSE > 0.75) compared to the ANFIS and ARIMA in forecasting precipitation. Also, the results demonstrated that the ANFIS method can predict the precipitation values more accurately than the time series model based on various performance criteria. Further, fall forecasts ranked “very good” for the CART method, while the ANFIS and the time series model approximately indicated “satisfactory” and “unsatisfactory” performances for all stations, respectively. The forecasts from the CART approach can be helpful and critical for decision makers when precipitation forecast heralds a prolonged drought or flash flood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.