Abstract

In the current investigation, an effort was made to understand the precipitate evolution process during equal channel angular pressing (ECAP) of an alloy composed of only aluminium, zinc and magnesium. For this purpose, three different compositions of cast Al-Zn-Mg alloys were selected and ECAP processed in route BC upto four passes. Microstructural observations indicated that, ECAP processing leads to refined structure possessing high density dislocations and large amount of grains with high angle grain boundaries. The precipitate volume in the alloys increased with increase in the zinc quantity in the alloy. Microstructural characterization through transmission electron microscope (TEM) and differential scanning calorimeter (DSC) revealed that, processing by ECAP results in structure having stable η phase precipitates without the presence of GP zones and intermediate η′ phase precipitates. Thereby demonstrates that, ECAP process accelerates the precipitation kinetics and also shifts the morphology of the precipitates. Higher mechanical properties were noticed in the alloy containing large quantity of MgZn2 precipitates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.