Abstract

We consider several protostellar systems where either a precessing jet or at least two misaligned jets have been observed. We assume that the precession of jets is caused by tidal interactions in noncoplanar binary systems. For Cep E, V1331 Cyg and RNO 15-FIR the inferred orbital separations and disk radii are in the range 4-160 AU and 1-80 AU, respectively, consistent with those expected for pre-main sequence stars. Furthermore, we assume or use the fact that the source of misaligned outflows is a binary, and evaluate the lengthscale over which the jets should precess as a result of tidal interactions. For T Tau, HH1 VLA 1/2 and HH 24 SVS63, it may be possible to detect a bending of the jets rather than 'wiggling'. In HH 111 IRS and L1551 IRS5, 'wiggling' may be detected on the current observed scale. Our results are consistent with the existence of noncoplanar binary systems in which tidal interactions induce jets to precess.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.