Abstract

Following the suggestion that nucleoside analogues having their nucleobases joined to ribose via a carbon-carbon bond might easily arise prebiotically, the glycosylation of uracil carrying electron-donating substituents (Me, OH, OCH3, NH2) at its 5 or 6 positions was investigated. Of these, only 6-aminouracil gave glycosylated products in greater than 50% yield under simulated prebiotic conditions. The reaction provided four products, three of which were purified by preparative HPLC. The structure of the isolated compounds was determined by high-resolution mass spectrometry and NMR spectroscopy. The glycosylation products were, as expected, C-nucleosides, with the sugar having either a pyranose or a furanose structure, with the ratio depending on the precise conditions, implying reversible addition. Interestingly, the 6-aminouracil riboside displays two hydrogen bonding patterns, the "acceptor-donor-acceptor" pattern of uridine itself and (upon 180° rotation) the "acceptor-donor-donor" hydrogen bonding pattern. The second, in an artificially expanded genetic information system, is trivially called "V" and pairs with a purine analogue that presents the complementary "donor-acceptor-acceptor" hydrogen bonding pattern, trivially called "J."

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.