Abstract

The O2 preadsorption properties prior to the application for nanomaterials have rarely attracted attention; however, they greatly affect the surface nature between gas and nanomaterials. Here, a hierarchically ZnO nest-like architecture (ZnO NAs) with nanosheets was synthesized by a facile hydrothermal method without structure-directing agents and templates. The percentage of exposed (001) facet for ZnO NAs is ∼95% according to its micromorphology. A gas sensor fabricated by ZnO NAs exhibits high sensitivity, low detection limit, fast response, and good selectivity to acetone at the low working temperature (105 °C). The distinct gas-sensing properties of ZnO NAs are mainly attributed to the specific surface area (63.46 m2/g) and high active (001) facet for the nanosheets. Note that a preadsorption of O2 from air on ZnO NAs and the gas reaction mechanism are put forward based on the preadsorbed behavior and target gas response. Moreover, by the aid of first-principles on the analysis of its surface adsorpt...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.