Abstract

The benefits of technological and theoretical scaffolding were observed when pre-service teachers aiming to teach upper elementary grades were given three learning-based geometrical inquiry tasks involving inscribed circles. They were asked to collaboratively examine the accompanying geometrical illustration and data for some new or interesting feature and then propose a hypothesis resulting from their observations and prove them.<br /> Due to the difficulty generally involved in proposing and proving geometrical hypotheses, two forms of scaffolding were provided: theoretical scaffolding based on revising previous learning or specific attributes of the given data and technological scaffolding in the form of specifically designed GeoGebra applets that allowed dynamic observation of the attributes of the geometrical shapes and the changes they underwent during modification.<br /> We found that the two forms of scaffolding led to relatively pre-service teachers’ high levels of success. They exhibited high levels of interest and participation, were engaged in the tasks, and underwent high-quality learning processes. In follow-up interviews, they confirmed that the exercise improved their inquiry skills, and developed their pedagogical and technological knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.