Abstract

Trivalent arsenic (As(III)) and divalent cadmium (Cd(II)) contamination in water environment is an urgent issue because of their most toxic physicochemical properties. Herein, the simultaneous purification of As(III) and Cd(II) from aqueous solution was achieved by use of a pre-magnetic Fe modified bamboo biochar that cross-linked CaMgAl layered double-hydroxide composite (Fe-BC@LDH). In a binary system, adsorption equilibrium of As(III) and Cd(II) onto specific sorbent Fe-BC@LDH was reached within 100 and 10 min of contact time under anaerobic conditions, respectively, and the maximum adsorption capacities of As(III) and Cd(II) by Fe-BC@LDH were respectively calculated to be ⁓265.3 and ⁓320.7 mg/g at pH 4.5 and 5- and 14-times than that of unmodified biochar. Moreover, adsorption in a competitive or single system, the sorbent displayed a greater preference for Cd(II). Importantly, the removal of As(III) and Cd(II) onto the composite was more favorable in a binary system due to formation of ternary FeOCdAs bonding configuration as well as the redox transformation of As(III) to As(V), inner-sphere complexation of MOAs/Cd (MFe, Ca, Mg, Al), electrostatic attraction, and co-precipitation of scorodite and hydroxy‑iron‑cadmium. Furthermore, the nanocomposite was still highly efficient after 5 adsorption cycles. This study demonstrated that the synthesized cost-effective Fe-BC@LDH is a promising candidate for the simultaneous separation of As(III) and Cd(II) from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.