Abstract

As an emerging research on multivalent zinc ion hybrid supercapacitors has been made huge leap, yet low cycle stability and low energy density are always the main bottlenecks of hybrid capacitors. The layered structure material Zn-doped δ-MnO2 to promote the insertion/extraction of zinc ions is used as the cathode and activated carbon is used as the anode exploiting battery and capacitor energy storage mechanism to increase energy density without sacrificing power density. Electrochemical measurements manifested that the assembled aqueous zinc ion hybrid capacitor has a high energy density of 157.2 Wh kg−1, a power density of 16 kW kg−1 (0.2 A g−1) and good cycling stability with 80.2% capacity retention over 30,000 charge/discharge cycles. The excellent electrochemical performance of the device is attributed to the stable layered structure of pre-zincified MnO2, which makes the insertion/extraction of Zn2+ greatly reversible. This study provides a novel strategy for new generation zinc ion hybrid capacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.