Abstract

We introduce a new family of (2+1)D light beams with pre-engineered abruptly autofocusing properties. These beams have a circularly symmetric input profile that develops outward of a dark disk and oscillates radially as a sublinear-chirp signal, creating a series of concentric intensity rings with gradually decreasing width. The light rays involved in this process form a caustic surface of revolution that bends toward the beam axis at an acceleration rate that is determined by the radial chirp itself. The collapse of the caustic on the axis leads to a large intensity buildup right before the intended focus. This ray-optics interpretation provides valuable insight into the dynamics of abruptly autofocusing waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.