Abstract

There exists a great gap between one-time pad with perfect secrecy and conventional mathematical encryption. The Yuen 2000 (Y00) protocol or $\ensuremath{\alpha}\ensuremath{\eta}$ scheme may provide a protocol which covers from the conventional security to the ultimate one, depending on implementations. This paper presents the complexity-theoretic security analysis on some models of the Y00 protocol with nonlinear pseudo-random-number-generator and quantum noise diffusion mapping (QDM). Algebraic attacks and fast correlation attacks are applied with a model of the Y00 protocol with nonlinear filtering like the Toyocrypt stream cipher as the running key generator, and it is shown that these attacks in principle do not work on such models even when the mapping between running key and quantum state signal is fixed. In addition, a security property of the Y00 protocol with QDM is clarified. Consequently, we show that the Y00 protocol has a potential which cannot be realized by conventional cryptography and that it goes beyond mathematical encryption with physical encryption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.