Abstract

This paper proposes a novel barrier function-based adaptive sliding mode control scheme with practical predefined-time convergence for reusable launch vehicles subject to parametric uncertainties and external disturbances. Distinguished from existing similar works, the proposed control scheme ensures that the attitude tracking errors converge to a pre-assigned region in a prescribed time without any prior information on the lumped disturbance, and the control gain is not overestimated. Firstly, a novel performance function with quantitatively predefined convergence time and steady-state error is designed to constrain the attitude tracking errors, and the equivalent unconstrained transformation is carried out for the constrained model. Subsequently, a novel adaptive sliding mode controller is devised for the transformed system by synthesizing the integral sliding mode paradigm and the barrier function-based adaptive gain technique. The stability of the controller is analyzed by the Lyapunov method. Finally, comparative numerical simulation results are presented to demonstrate the effectiveness and improved performances of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.