Abstract

Theoretically, the Markov boundary (MB) is the optimal solution for feature selection. However, existing MB learning algorithms often fail to identify some critical features in real-world feature selection tasks, mainly because the strict assumptions of existing algorithms, on either data distribution, variable types, or correctness of criteria, cannot be satisfied in application scenarios. This paper takes further steps toward opening the door to real-world applications for MB. We contribute in particular to a practical MB learning strategy, which can maintain feasibility and effectiveness in real-world data where variables can be numerical or categorical with linear or nonlinear, pairwise or multivariate relationships. Specifically, the equivalence between MB and the minimal conditional covariance operator (CCO) is investigated, which inspires us to design the objective function based on the predictability evaluation of the mapping variables in a reproducing kernel Hilbert space. Based on this, a kernel MB learning algorithm is proposed, where nonlinear multivariate dependence could be considered without extra requirements on data distribution and variable types. Extensive experiments demonstrate the efficacy of these contributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.