Abstract

This study focuses on visual navigation methods for autonomous mobile robots based on semantic segmentation results. The challenge is to perform the expected actions without being affected by the presence of pedestrians. Therefore, we implemented a semantics-based localization method that is not affected by dynamic obstacles and a direction change method at intersections that functions even with coarse-grain localization results. The proposed method was evaluated through driving experiments in the Tsukuba Challenge 2022, where a 290 m run including 10 intersections was achieved in the confirmation run section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.