Abstract

We present a simple and accurate method for measuring the Giles parameters of a double-clad ytterbium-doped fiber. The characterization is performed by cut-back on the doped fiber under constant pumping. Using nonlinear curve-fitting of the amplified spontaneous emission (ASE) power-density spectra, along with iterative solution of the photon balance model, we compute both the small-signal gain at complete population inversion and the small-signal absorption of the fiber. The method successfully predicts the extraction efficiency of an amplifier operating at 1064 nm. The ratio between the signal power and the out-of-band ASE power at the output of the amplifier is also accurately predicted by introducing spurious feedback from the fiber facets in the photon balance model. This work shows that a fiber facet reflectivity of a few thousandths of a percent (-40 to -50) dB can significantly enhance the out-of-band ASE power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.