Abstract
Many NP-hard problems on graphs have polynomial, in fact usually linear, dynamic programming algorithms when restricted to partial k-trees (graphs of treewidth bounded by k), for fixed values of k. We investigate the practicality of such algorithms, both in terms of their complexity and their derivation, and account for the dependency on the treewidth k. We define a general procedure to derive the details of table updates in the dynamic programming solution algorithms. This procedure is based on a binary parse tree of the input graph. We give a formal description of vertex subset optimization problems in a class that includes several variants of domination, independence, efficiency and packing. We give algorithms for any problem in this class, which take a graph G, integer k and a width k tree-decomposition of G as input, and solve the problem on G in O(n24k) steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.