Abstract

BackgroundMore than 50 percent of all infants born very preterm will experience significant motor and cognitive impairment. Provision of early intervention is dependent upon accurate, early identification of infants at risk of adverse outcomes. Magnetic resonance imaging at term equivalent age combined with General Movements assessment at 12 weeks corrected age is currently the most accurate method for early prediction of cerebral palsy at 12 months corrected age. To date no studies have compared the use of earlier magnetic resonance imaging combined with neuromotor and neurobehavioural assessments (at 30 weeks postmenstrual age) to predict later motor and neurodevelopmental outcomes including cerebral palsy (at 12–24 months corrected age). This study aims to investigate i) the relationship between earlier brain imaging and neuromotor/neurobehavioural assessments at 30 and 40 weeks postmenstrual age, and ii) their ability to predict motor and neurodevelopmental outcomes at 3 and 12 months corrected age.Methods/designThis prospective cohort study will recruit 80 preterm infants born ≤30 week’s gestation and a reference group of 20 healthy term born infants from the Royal Brisbane & Women’s Hospital in Brisbane, Australia. Infants will undergo brain magnetic resonance imaging at approximately 30 and 40 weeks postmenstrual age to develop our understanding of very early brain structure at 30 weeks and maturation that occurs between 30 and 40 weeks postmenstrual age. A combination of neurological (Hammersmith Neonatal Neurologic Examination), neuromotor (General Movements, Test of Infant Motor Performance), neurobehavioural (NICU Network Neurobehavioural Scale, Premie-Neuro) and visual assessments will be performed at 30 and 40 weeks postmenstrual age to improve our understanding of the relationship between brain structure and function. These data will be compared to motor assessments at 12 weeks corrected age and motor and neurodevelopmental outcomes at 12 months corrected age (neurological assessment by paediatrician, Bayley scales of Infant and Toddler Development, Alberta Infant Motor Scale, Neurosensory Motor Developmental Assessment) to differentiate atypical development (including cerebral palsy and/or motor delay).DiscussionEarlier identification of those very preterm infants at risk of adverse neurodevelopmental and motor outcomes provides an additional period for intervention to optimise outcomes.Trial registrationAustralian New Zealand Clinical Trials Registry ACTRN12613000280707. Registered 8 March 2013.Electronic supplementary materialThe online version of this article (doi:10.1186/s12887-015-0439-z) contains supplementary material, which is available to authorized users.

Highlights

  • More than 50 percent of all infants born very preterm will experience significant motor and cognitive impairment

  • Earlier identification of those very preterm infants at risk of adverse neurodevelopmental and motor outcomes provides an additional period for intervention to optimise outcomes

  • Interventions are becoming available which aim to improve outcomes for infants born very preterm, necessitating the development of tools which can firstly identify those infants at risk of adverse outcomes as early as possible, and secondly provide accurate quantitative measurement of changes that are the result of an intervention

Read more

Summary

Discussion

This protocol describes the first study examining the clinical correlates of early advanced brain imaging and clinical measures at 30 weeks PMA to predict motor and neurodevelopmental outcomes at 3 and 12 months CA. The results of this study will i) establish the relationships between early clinical measures, EEG, perinatal variables and nutrition and early advanced neuroimaging at 30 weeks PMA, ii) establish which components of brain structure and function most accurately predict neurodevelopmental, motor outcomes and CP at 3 and 12 months CA, iii) accurately identify infants at risk of adverse outcomes at an earlier stage, introducing an additional window of opportunity for intervention, iv) contribute to understanding brain development between 30 and 40 weeks PMA, v) and develop robust quantitative biomarkers of brain maturation, which can be used in the research of interventions in this population. Authors’ contributions JMG, RNB, PBC, SER, KP, MML, JF, BEL, SEB, CMF, AC, RSW contributed to study conception, design and development. Critically revised and approved the final manuscript

Background
Methods and analyses
Findings
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.