Abstract
Alzheimer's disease is a major cause of dementia in humans. The appearance of cognitive decline is linked to the overproduction of a short peptide called beta-amyloid (Abeta) in both soluble and aggregate forms. Here, we show that injecting macrophage colony-stimulating factor (M-CSF) to Swedish beta-amyloid precursor protein (APP(Swe))/PS1 transgenic mice, a well-documented model for Alzheimer's disease, on a weekly basis prior to the appearance of learning and memory deficits prevented cognitive loss. M-CSF also increased the number of microglia in the parenchyma and decreased the number of Abeta deposits. Senile plaques were smaller and less dense in the brain of M-CSF-treated mice compared to littermate controls treated with vehicle solution. Interestingly, a higher ratio of microglia internalized Abeta in the brain of M-CSF-treated animals and the phagocytosed peptides were located in the late endosomes and lysosomes. Less Abeta(40) and Abeta(42) monomers were also detected in the extracellular protein enriched fractions of M-CSF-treated transgenic mice when compared with vehicle controls. Finally, treating APP(Swe)/PS1 mice that were already demonstrating installed Abeta pathology stabilized the cognitive decline. Together these results provide compelling evidence that systemic M-CSF administration is a powerful treatment to stimulate bone marrow-derived microglia, degrade Abeta and prevent or improve the cognitive decline associated with Abeta burden in a mouse model of Alzheimer's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.