Abstract

The powered resonance tube (PRT) actuator and its variants are new developments in active flow control (AFC) technology. The PRT is attractive because it has no moving parts and can produce acoustic tones that have amplitudes greater than 150 dB over a large frequency bandwidth. The first part of this paper deals with the resonance characteristics of the PRT as a function of the operating parameters such as jet-to-tube spacing (Sp), tube depth (d), and nozzle pressure ratio (NPR). It was found that: (1) at low NPR (3.33), the PRT resonates at discrete combinations of spacing and depth. (2) Using theoretical estimates for predicting shock cell lengths, one could observe a correlation between the theoretical prediction for shock cell length and the spacing at which the PRT resonates. (3) At high NPR (4.29), for a fixed depth, the PRT resonates at virtually all spacings. (4) The frequency at which the PRT resonates remains approximately constant, regardless of spacing. The second part of the study focused on examining the directivity of the acoustic radiation from the PRT—significant for developing orientation strategies of the PRT with respect to the target flow in the end application. The directivity of the fundamental PRT tone and that of its harmonics were studied for a variety of resonance frequencies, both separately as well as cumulatively. It was found that the fundamental part of the actuation signal radiated predominantly in the downstream direction of the jet for low resonance frequencies. As the resonance frequency was increased from 3 to 12 kHz, the directivity changed from downstream of the jet to vertically upward, and finally upstream of the jet at the higher frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.