Abstract

Maintaining an accurate power system model is crucial for a variety of applications such as electricity markets. In this paper, the cyber security issue induced by critical parameters in electricity market operations is investigated. Critical parameters are a set of model parameters the errors of which cannot be detected due to the lack of local measurements. In this paper, it is first proven that the criticality property of parameters is independent from system operating points, i.e., the maliciously injected errors will always remain undetectable. Then, the cyber attack against critical parameters is formulated as a bilevel programming problem in search of the optimal attack strategy or the worst situation faced by the system operators. An effective algorithm for solving this problem is also provided. Simulation results verify that by injecting undetectable errors into critical model parameters, the locational marginal prices in electricity markets can be significantly distorted, which leads to financial benefits for the attackers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.