Abstract

Large-scale Internet services require a computing infrastructure that can beappropriately described as a warehouse-sized computing system. The cost ofbuilding datacenter facilities capable of delivering a given power capacity tosuch a computer can rival the recurring energy consumption costs themselves.Therefore, there are strong economic incentives to operate facilities as closeas possible to maximum capacity, so that the non-recurring facility costs canbe best amortized. That is difficult to achieve in practice because ofuncertainties in equipment power ratings and because power consumption tends tovary significantly with the actual computing activity. Effective powerprovisioning strategies are needed to determine how much computing equipmentcan be safely and efficiently hosted within a given power budget. In this paper we present the aggregate power usage characteristics of largecollections of servers (up to 15 thousand) for different classes ofapplications over a period of approximately six months. Those observationsallow us to evaluate opportunities for maximizing the use of the deployed powercapacity of datacenters, and assess the risks of over-subscribing it. We findthat even in well-tuned applications there is a noticeable gap (7 - 16%)between achieved and theoretical aggregate peak power usage at the clusterlevel (thousands of servers). The gap grows to almost 40% in wholedatacenters. This headroom can be used to deploy additional compute equipmentwithin the same power budget with minimal risk of exceeding it. We use ourmodeling framework to estimate the potential of power management schemes toreduce peak power and energy usage. We find that the opportunities for powerand energy savings are significant, but greater at the cluster-level (thousandsof servers) than at the rack-level (tens). Finally we argue that systems needto be power efficient across the activity range, and not only at peakperformance levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.