Abstract

Wide bandgap devices (WBGs) allow Power Factor Correction (PFC) circuits to operate at MHz frequency which leads to a better power density. Compared with kHz operation, MHz PFC in critical conduction mode (CrM) yields larger inductor valley current during the switch soft turn-on. Moreover, the input current distortion near grid voltage zero crossing has not been taken into account in the traditional model. As a result, the traditional PFC design tool shows major inaccuracy in switching frequency, inductor current envolopes and power loss estimation. The paper analyzes the problems in the traditional model, and proposes an improved power loss model to aid the design of MHz CrM PFC. Experimental results are shown to prove the accuracy of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.