Abstract
In this paper, a new control strategy for an induction motor (IM) drive system fed from three-phase pulse width modulation (PWM) ac chopper is proposed. The main objective of the proposed control scheme is to achieve input power factor correction (PFC) of the IM drive system under different operating conditions. PFC is achieved by continuously forcing the actual three-phase supply currents with the corresponding reference currents, which are generated in phase with the supply voltages, using hysteresis band current control (HBCC) technique. The proposed control strategy has two loops: the inner loop and outer loop. The output of the outer loop is the magnitude of the supply reference current resulting from either speed controller or startup controller, whereas the output of the inner loop is PWM signals of the ac chopper. The proposed ac chopper features a smaller number of active semiconductor switches, four IGBTs, with only two PWM gate signals. As a result, the proposed system is simple, reliable, highly efficient, and cost effective. Mathematical analysis of the drive system is presented. Components of the input LC filter are designed using frequency response. The IM drive system is modeled using MATLAB/SIMULINK, and a laboratory prototype was built and tested. The simulation and experimental results confirm the validity and robustness of the proposed control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.