Abstract
When a tandem light-emitting diode (OLED) utilizes unoptimized electroluminescent (EL) units, it is fairly easy to improve the power efficiency of such a device. However, when a tandem OLED utilizes optimized EL units, improved power efficiency can only be achieved if each intermediate connector has excellent carrier injection capabilities along with a negligible voltage drop across it. Four organic intermediate connectors were studied in this work, one of which consisting of a Li-doped 4,7-diphenyl-1,10-phenanthroline layer and a 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile layer, exhibits the best power efficiency improvement for tandem OLEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.