Abstract
We investigated inertial and aerodynamic power consumption during hovering flight of the hawk moth Manduca sexta. The aerodynamic power was estimated based on the aerodynamic forces and torques measured on model hawk-moth wings and hovering kinematics. The inertial power was estimated based on the measured wing mass distribution and hovering kinematics. The results suggest that wing inertial power (without consideration of muscle efficiency and elastic energy storage) consumes about half of the total power expenditure. Wing areal mass density was measured to decrease sharply from the leading edge toward the trailing edge and from the wing base to the wing tip. Such a structural property helps to minimize the wing moment of inertia given a fixed amount of mass. We measured the aerodynamic forces on the rigid and flexible wings, which were made to approximate the flexural stiffness (EI) distribution and deformation of moth wings. It has been found that wings with the characteristic spanwise and chordwise decreasing EI (and mass density) are beneficial for power efficiency while generating aerodynamic forces comparative to rigid wings. Furthermore, negative work to aid pitching in stroke reversals from aerodynamic forces was found, and it showed that the aerodynamic force contributes partially to passive pitching of the wing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.