Abstract
Discrepancies reported in the literature between numerical predictions and experimental measurements in low-pressure Hg discharges at high current densities are considered. Elements of a one-dimensional fluid model and recent spectroscopic and Langmuir probe measurements are combined in a semi-empirical way to individually examine components of the positive column power balance and the discharge conductivity. At a Hg vapour pressure of 0.81 Pa (6.1 mTorr) and a current density of 300 mA cm−2, previous discrepancies in the power balance and discharge conductivity are simultaneously resolved by assuming a higher electron density than that obtained from the Langmuir probe measurements. This conclusion is supported by independent measurements of ion density reported in a companion paper. The importance of radial cataphoresis under these conditions, particularly with regard to radiation transport, is highlighted. This work is of particular interest for the design of fluorescent lamps operating at high current densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.