Abstract

AbstractRecent development in using wind turbines for urban areas results in inserting turbines inside buildings. As buildings' walls may act as a duct for the turbine, this study focuses on a ducted wind turbine with a fixed duct geometry. A method is organized for achieving the improved generated power and the wind speed augmentation with fixed geometry of duct regardless of the type of the turbine, which is the aim of building designers. Using a porous disc (PD) instead of a wind turbine rotor makes the study cost and time effective. PDs within a duct help estimate any given duct's maximum available power extraction capability. In addition, experimental and numerical tests examine the effect of PDs solidity on the performance of diffuser augmented wind turbines and the corresponding economic analysis. Both experimental and numerical results agree that the power coefficient highly depends on the solidities of the PD. The power coefficient of a ducted PD with a solidity of 0.3 is augmented by up to 30%. Nevertheless, in some cases, employing a duct can contribute to the power reduction if the solidity exceeds a critical value. A smoke visualization technique helps vortex study. Economic assessment of a ducted turbine for three scenarios belonging to Germany and Italy shows a 15.3% decline in cost per electricity production. The payback period decreases by 3.42 years, 7.68 months, and 6.36 months for Scenarios 1, 2, and 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.