Abstract

Dustiness is not an intrinsic physically defined property of a powder, but the tendency of particles to become airborne in response to mechanical and/or aerodynamic stimuli. The present study considers a set of 10 physical properties to which the powder dustiness can be attributed. Through a preliminary investigation of a standardized continuous drop test scenario, we present first set of results on the varying degrees or weights of influence of these properties on the aerosolization tendency of powder particles. The inter-particle distance is found to be the most dominant property controlling the particle aerosolization, followed by the ability of powder particles to get electrostatically charged. We observe the kinetics involved during powder aerosolization to be governed by two ratios: drag force/cohesive force and drag force/gravitational force. The converging tendencies in these initial results indicate that these physical properties can be used to model dustiness of falling powder, which can eventually be used in risk assessment tools for an efficient exposure estimation of the powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.