Abstract

Eimeria infection impacts upon chicken welfare and economic productivity of the poultry sector. Live coccidiosis vaccines for chickens have been available for almost 70 years, but the requirement to formulate blends of oocysts from multiple Eimeria species makes vaccine production costly and logistically demanding. A multivalent vaccine that does not require chickens for its production and can induce protection against multiple Eimeria species is highly desirable. However, despite the identification and testing of many vaccine candidate antigens, no recombinant coccidiosis vaccine has been developed commercially. Currently, assessment of vaccine efficacy against Eimeria, and the disease coccidiosis, can be done only through in vivo vaccination and challenge experiments but the design of such studies has been highly variable. Lack of a “standard” protocol for assessing vaccine efficacy makes comparative evaluations very difficult, complicating vaccine development, and validation. The formulation and schedule of vaccination, the breed of chicken and choice of husbandry system, the species, strain, magnitude, and timing of delivery of the parasite challenge, and the parameters used to assess vaccine efficacy all influence the outcomes of experimental trials. In natural Eimeria infections, the induction of strong cell mediated immune responses are central to the development of protective immunity against coccidiosis. Antibodies are generally regarded to be of lesser importance. Unfortunately, there are no specific immunological assays that can accurately predict how well a vaccine will protect against coccidiosis (i.e., no “correlates of protection”). Thus, experimental vaccine studies rely on assessing a variety of post-challenge parameters, including assessment of pathognomonic lesions, measurements of parasite replication such as oocyst output or quantification of Eimeria genomes, and/or measurements of productivity such as body weight gain and feed conversion rates. Understanding immune responses to primary and secondary infection can inform on the most appropriate immunological assays. The discovery of new antigens for different Eimeria species and the development of new methods of vaccine antigen delivery necessitates a more considered approach to assessment of novel vaccines with robust, repeatable study design. Careful consideration of performance and welfare factors that are genuinely relevant to chicken producers and vaccine manufacturers is essential.

Highlights

  • Poultry health and welfare is threatened by a number of pathogens and protozoan parasites of the genus Eimeria are among the most important

  • Control of Eimeria in commercial chicken production relies on routine chemoprophylaxis or vaccination using formulations of live virulent or attenuated Eimeria species

  • This review examines the challenges in design of vaccination studies for chicken coccidiosis and methods for evaluating vaccine efficacy

Read more

Summary

INTRODUCTION

Poultry health and welfare is threatened by a number of pathogens and protozoan parasites of the genus Eimeria are among the most important. The requirement for a live vaccine to include controlled doses of oocysts for all pathogenic species of Eimeria, and in some cases multiple strains of Eimeria maxima, makes vaccine manufacture logistically demanding as all vaccine lines have to be propagated separately in chickens under stringent specific pathogen free conditions Another important consideration is that fecal-oral recycling of vaccine parasites is required to generate levels of protective immunity that are sufficient to protect chickens against pathogenic challenge by most Eimeria species [13]. The first vaccines against coccidia used live, wild-type, sporulated E. tenella oocysts and were initially marketed in the 1950’s based on observations that administration of low doses of oocysts over a number of days induced protective immunity against homologous challenge Over time these first generation vaccines were developed to incorporate further Eimeria species and have been widely utilized, in North America [15]. Using specific pathogen free and/or inbred chicken lines can reduce non-treatment variation and improve statistical validity

ETHICAL CONSIDERATIONS IN VACCINE CHALLENGE STUDIES
Findings
CONCLUSIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.