Abstract

Liposomes have recognized advantages as nano-particle drug carriers for tumor therapy. In this study, the pharmacokinetics and distribution of intratumorally administered liposomes were investigated as drug carriers for treating solid tumors via direct intratumoral administration. 99mTc-liposomes were administered intratumorally to nude rats bearing human head and neck squamous cell carcinoma xenografts. Planar gamma camera images were analyzed to evaluate the local retention of the intratumorally administered liposomes. Co-registered pinhole micro-single photon emission computed tomography (SPECT)/computed tomography (CT) images were acquired of the whole animal as well as the dissected tumors to determine intratumoral distribution of the 99mTc-liposomes. For 99mTc-liposomes, there was an initial retention of 47.4 ± 11.0% ( n = 4) in tumors and surrounding tissues. At 20 h, 39.2 ± 10.6% ( n = 4) of 99mTc-activity still remained in the tumor. In contrast, only 18.7 ± 3.3% ( n = 3) of the intratumoral 99mTc-activity remained for unencapsulated 99mTc-complex at 20 h. Pinhole micro-SPECT images demonstrated that 99mTc-liposomes also have a superior intratumoral 99mTc-activity diffusion compared with unencapsulated 99mTc-complex. Higher intratumoral retention of 99mTc-liposomes accompanied by an improved intratumoral diffusion suggests that intratumorally administered liposomal drugs are potentially promising agents for solid tumor local therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.