Abstract

Many organochlorine pesticides (OCPs) are considerably high toxic, and have bioaccumulation potential and chronic adverse impact on both wildlife and human. This study focuses on the fate and metabolic degradation, which is the potential to be more efficient, economic, and safe compared to the aforementioned conventional methods. By these positive attributes, the present work then investigates the capability of newly isolated pathogenic yeast Pichia kluyveri FM012 for biodegradation of DDT in aquatic culture. Pichia kluyveri FM012 mycelia were cultured in a mineral liquid medium consisting of the solution of DDT (40 mg/l) with some experimental conditions such as the initial pH of the culture (5–8), agitation speed (0–150 rpm), and various carbon and nitrogen sources. The highest biodegradation of DDT by Pichia kluyveri FM012 was shown in the culture with pH 5 and 150 rpm agitation. Moreover, the use of glucose and yeast offers the best performance for the degradation compared to other carbon and nitrogen sources. The highest enzyme activity during the decolorization process was dioxygenase. Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, and GC-MS profile showed that the transformation of DDT has occurred. The present DDE and DDD as metabolites of DDT were confirmed by GCMS at a retention time of 17.8 and 16.6 min. The outcomes of this study have several important implications for future practice, for instance in providing an alternative biodegradation agent to remove some organochlorine pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.