Abstract

Contrast enhancement is necessary for visualizing, diagnosing, and treating brain tumors. Through this study, we aimed to examine the potential role of general adversarial neural networks in generating artificial intelligence-based enhancement of tumors using a lightweight model. A retrospective study was conducted on magnetic resonance imaging scans of patients diagnosed with brain tumors between 2020 and 2023. A generative adversarial neural network was built to generate images that would mimic the real contrast enhancement of these tumors. The performance of the neural network was evaluated quantitatively by VGG-16, ResNet, binary cross-entropy loss, mean absolute error, mean squared error, and structural similarity index measures. Regarding the qualitative evaluation, nine cases were randomly selected from the test set and were used to build a short satisfaction survey for experienced medical professionals. One hundred twenty-nine patients with 156 scans were identified from the hospital database. The data were randomly split into a training set and validation set (90%) and a test set (10%). The VGG loss function for training, validation, and test sets were 2,049.8, 2,632.6, and 4,276.9, respectively. Additionally, the structural similarity index measured 0.366, 0.356, and 0.3192, respectively. At the time of submitting the article, 23 medical professionals responded to the survey. The median overall satisfaction score was 7 of 10. Our network would open the door for using lightweight models in performing artificial contrast enhancement. Further research is necessary in this field to reach the point of clinical practicality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.